Escape the Lock: 100% Engagement Activity

As there are some topics in the math curriculum that it might be hard to get authentic buy-in from teenagers, we sometimes have look past the content to help to find ways to leverage interest and attention. Middle and high school math teachers have lots of techniques in our bags of tricks, from meaningful and satisfying classroom structures to “gamifying” the class to writing problems based on the latest memes.

My Grade 10 students came in to class super excited about a birthday party they had attended, where they had participated in an escape-the-room game, and I wondered how I might leverage this excitement in my class. I searched around a bit and found some “crack the safe” activities from Dan Walker via Tes, and used this model to create a series of 5 worksheets to practice using the correct order of operations for my Grade 8 students.

The idea is that students need to answer a series of problems, and add the solutions together to form a 3-digit number. The number is the combination to a lock, and when they open the lock, they get the next worksheet. The first team to solve all 5 locks gets DJ privileges the next time we play music in class (…which I use judiciously).  I had students work in groups of 3.  I have 55 minute classes, and 5 worksheets turned out to be perfect – In one section one group finished with two minutes to go , and in the other section, I had three groups on the last worksheet but no-one finished.  They stayed motivated and there was urgency to work for the whole class.

I had planned to put together a toolbox to lock, maybe a hasp on the closet door, and a locked drawer with a locked box inside. But other things got in the way of this extensive prep – including an epic battle with the printer – so it was all I could do to get the worksheets ready and the lock combinations set. But it turned out that this was all that we needed. When I explained that there were some 3-digit combination locks that could be opened by getting the correct solutions, my students were dialed in from the moment I said go, and didn’t want to leave when the bell rang. I didn’t have to redirect a single kid to stay in task, and it didn’t matter that the locks were just sitting on a table at the front of the room – not actually locking anything. I think that I’ll add these other pieces as I have time and accumulate more/ different kinds of locks – it can only add drama, mystery, and more fun.

Students knew that they were basically just completing a practice set on a worksheet, but they were super motivated. And maybe the best part was that they needed to attend to precision. The locks wouldn’t open unless they completed every problem correctly. If a group was really struggling, I would check their work against the key, and let them know how many problems they had gotten wrong – but not which ones.  I definitely plan to use this structure again – I think that it would work well for older students as well as middle schoolers.

Here are the worksheets for Order of Operations “Escape the Lock.” Let me know how you use these and if you improve on this process.

Algebra Notebooks: One Year In.

Although I have been thinking of this for a long time, last year for the first time, I guided students to create notebooks for Algebra 1 and Algebra 2. The major design influence for these notebooks was from Sarah Carter(@mathequalslove ). Her notebook dividers inspired me, and gave me exactly the structure that I needed to put these together. Feel free to skip down to the end of the post for the files. In this post, I’m sharing much of what we used for Algebra 2 last year.

I am convinced that this process really helped us in some key ways. We used them as a structure to organize the year’s work, a format to help relate one idea to the next, and a compact guide to prepare for skills-based assessments. The process of curating the notebooks was very clarifying for me. Textbooks have so much information, that it can be overwhelming for students. I wanted to include the most important ideas and examples in our notebooks so they would be useful and clear but not overwhelming.

Although I do admire some of the more “crafty” notebook pages, I didn’t include any foldy parts, or mini-booklets or that kind of thing during this first year of implementation. These are still “interactive” notebooks (INBs) in the important sense of that definition; that students use these as a tool to interact with math. I would think that part of the purpose of the foldy parts is to support students in using their notebooks not to just read over their notes, but to self-quiz, so because we did not do this, we did some explicit work on how to use their notebooks to study, even if they did not have to unfold a part to find the answer. We built in at least three meaningful interactions with new content: during class to fill in the big picture, at home to complete the notes, and then in class to use the notes to solve new problems (…a lot of open-notebook entrance tickets).

Each section has a unit divider, which includes summary learning targets, honors-level extensions, and essential questions. Just about everything in the notebook asks students to create their own notes – although in a very few places, I just made summary notes for them. These notes are generally filled in after we have done some discovery and worked examples together. They are one of the culminating parts of each lesson.

Here are some reflections on the Algebra 2 notebooks. I’ll share the Algebra 1 notebooks soon. As this was the first year, these are definitely incomplete. However, this is a substantial start, and I would be happy if it helps another teacher to get started. The files are .pdf for ease, but please do let me know if you want editable versions or have questions or suggestions.

A few lessons from year 1:

• Students take FOREVER to glue things
• Students love gluing things – even high-schoolers
• Students appreciate organizational help – both the ones who really need the help and those who would be fine on their own.

Things to add to the mix for next year:

• Some tweaks to a few of the graphic organizers (eg. the factoring pages – I didn’t really like these, and the method is a bit cumbersome. I learned a better technique from a colleague this year that I think I‘ll use next year).
• Include a complete vocab page for each unit
• I want to do a better job with helping binder organization (…the companion to the math notebook – everything that doesn’t go in the notebook goes in the binder).

In some cases, in the files below, I’ve included both a blank and a filled-in version, which generally includes teacher notes. Unless the time pressure doesn’t allow for this, I would suggest always giving students the blank versions so they can make their own notes. Having said that, summary notes can be useful if they are given at the end of a topic to make sure that the notes are correct – I tried to do regular teacher or peer notebook checks, but some mistakes slip by, and we wanted to make sure that the notebooks contained correct info.

These are not meant to be a stand-alone. As with any textbook, these notes are always meant to be guided by the teacher.

Attributions/Notes for Notebook Pages: Although I created a fair amount of this from scratch, I definitely borrowed a lot as well. I have made every effort to give credit for everything I’ve used in these notebooks. If I slipped up, I truly apologize. Please do let me know and I’ll add an attribution. This is just one year in for me, and should not be seen as the entirety of the courses. In a few cases, I found someone else’s graphic organizers and just used those. If I didn’t manage to keep track of the sources, I didn’t want to take credit for this work, so didn’t include those pages.

Unit 0

• Algebra Learning Agreements – we create these together, and I print a poster, which everyone signs and is posted in the classroom. I printed copies of these for kids to glue into their notebooks so we could refer to them when needed.

Unit 1

• The Key Feature Cards were adapted from the New Visions Curriculum
• Visual Patterns Guidelines – I had mixed feelings about this one, as the last thing I want to do is to do the explicit thinking for students and rob them of the best part of math – but I decided to include these pages so students have at least one or two worked examples. Upon reflection, I don’t think that this got in anyone’s way.

Unit 2

• Unit divider: family of functions poster – not sure from whence I got this graphic, but I didn’t make it. If you know, please let me know so I can give credit.

Unit 3

• Exact Trig Values Chart from Don Steward

Unit 4

Unit X

Back Cover

• Sweet math poster taken from
http://loopspace.mathforge.org/CountingOnMyFingers/PiecesOfMath/#section.1

Here is the file. Enjoy, and please let me know if you get some use out of this!

2017_Alg 2 Notebook

Polynomial Guess

MOTIVATING COMPLEXITY             THROUGH PUZZLES

I found a really nice number guessing game several years ago, and I’ve used variations of this puzzle several times over the last few years in my Algebra class. Kids can’t help but want to know the answer to a logic riddle like this, and this year it occurred to me that I might be able to leverage this “want to know the puzzle answer” to motivate some more focus on understanding quadratics or higher degree polynomials.

The idea is that you choose a “secret” number, and give clues one at a time until students can narrow down the possibilities to a single answer.  I decided to try the same idea with more complicated expressions, so I created a couple of quadratics puzzles, and a polynomial version. I had these posted on the Sweet Math wall, and would add clues roughly one each day. I ran a simple number version, alongside the more advanced ones to allow entry for middle schoolers, and extension for high schoolers. I definitely noticed kids lingering at the clues as I added them. Some kids even asked me what time of day I would be adding another one. In an unexpected turn, it was a history teacher who submitted the correct guess for the first number puzzle. In your face Algebra students!

Although I haven’t done this yet, I like the idea of creating examples for sequences, and I think I’ll try this next year. Is the glory of being the first to guess correctly important enough to take the chance of guessing when there might be two possibilities for the common ratio of a geometric sequence? Do you team up with another student when you’ve narrowed it down to two possibilities so one of you is guaranteed to be victorious?

Here are a few of the puzzles I made in case you’d like to try them out. Please do let me know if you find them useful or if you think that I should sequence the clues differently or if you have other ideas for how to make them better.

Number Guess 1

Number Guess 2

Polynomial Guess

MTBoS 2017: My favorite… tool for teaching transformations

My favorite tools for teaching transformations from parent functions are the Desmos Marbleslides. This is the first year that I have been able to use these activities to cement our learning across function families in our Algebra 2 classes. While these aren’t exactly skill and drill practice, they do seem to give students similar opportunities to do the repetitive work that is needed to build procedural fluency.

Just a few of the reasons I love these marbleslides…

• They are consistently motivating, fun, and engaging
• There are opportunities for creative solutions
• They present open problems with multiple solutions, battling the idea that all math problems have exactly one answer that is in the back of the textbook!
• As a teacher, I am always interested in and surprised by student solutions – very different from much of my grading
• Students demonstrate perseverance through these challenges – they really want to come to solutions, and will keep working until they succeed

I made my first custom Marbleslide for students to practice transforming absolute value functions. My activity is basically an exact copy of the Desmos team’s work, but with Absolute value equations. The custom activity was very easy to build, and I am turning over some more creative ideas to explore now that I have done this.

I am pretty sure that part of our success with our understanding of transformations has come from the course map this year. We are basing this year’s sequence of topics around families of functions. We began with an informal study, just looking at shapes and appearances of graphs, and what kids of situations might be modeled by different function types, and have been adding formal analysis of each family with each new unit.  Starting with this big picture has given students a framework to fit each family into – they are connecting what is similar and what is different as they dive into each new kind of function.

It has been amazing to see – we have just gotten into trigonometry, and by the time we got to the sine function, kids were so comfortable with shifting graphs around the plane that I didn’t need to do any explicit instruction – they knew to play with the constants to get their graphs to shift in different ways, and with very little prompting from me, they argued out the differences between period and amplitude shifts.

I am excited to see how these understandings will transfer to the Desmos Drawing project this year. Last year’s students set a pretty high bar, but this year’s 10th graders are already demonstrating a deeper understanding – and 3 months earlier.  Stay tuned!

2016-17 Algebra Notebooks: Scaffolding Organization

Confession: Since I began teaching math, I haven’t really managed to use a textbook. I do generally claim on my syllabus that we are using UCMCP or Saxon or Kendall Hunt as our “anchor” text, but year after year, I find that it is just too hard to integrate house-created or MTBoS-sourced materials with a textbook’s sequence. I do hand out textbooks at the start of the year (my current school uses UCSMP). I make sure to give the occasional homework assignment from the book so they remember that they have one as a resource. I direct them to the related lessons in the book as we work together in class, and I reference the parts of the book that students can use to help them prepare for semester exams when I prepare the exam review materials.

I also use some problem sets from the book, but truth be told, when I have tried, I just have not found printed textbooks to be effective learning tools for students – although I admit that it’s possible that I just haven’t found the right book yet. But I think that there is more to it – the pre-printed book format has to include all of the information, all at once. It takes away the possibility to choreograph and reveal information in a controlled way – a way that builds suspense, piques interest, and doesn’t spoon-feed.  This pedagogical idea closely correlates with the guiding principles for creating math activities as articulated by the Desmos team. Digital media allows for this type of sequencing of information, but we can also do this in person by doling out questions, information, and formal notes at the right moment during our lessons. We still share and give explanations, but whenever possible, not until AFTER a student has had the opportunity to make some sense for himself or herself.  Building our books piece by piece allows for this unfolding process.  I have also found that most students arrive in my class with some variation of the idea that math only exists in the textbook, and is not related to their lives outside of class at all.  Creating our own books has been another tool to help combat these beliefs.

To be real, this approach does translate to a huge amount of work. At this moment, there is no resource that is set up for us to use in this way, and putting together a coherent and cohesive curriculum for ourselves is a full time job in and of itself – even before delivering said curriculum. I totally understand why a teacher might choose to just use the book. Spending so much time doing this means that we are not spending time on other important parts of our job – like giving meaningful feedback, communicating with families, or collaborating on interdisciplinary work – all of which are arguably just as important. But I just have not found a book that works by itself. I think that I can do better for students by curating materials from multiple sources.

To get to the point of this post, what this has meant is that I create a ton of printed materials, which students have to keep organized. This has worked just fine for half of my students – the ones who have already built good organizational and study skills. The other half end up with binders full of papers – much of it meaningful, but often in no particular order, and they don’t know what to do to go back to review or to prepare for assessments.

This year, one of my professional goals is to help my students to organize all of this material. I required all students to bring a math notebook (at least 100 pages), and a math binder. The notebooks will only include material, which is correct, polished, and can be used to study from and the binders will be where we store all of our working and thinking – we are basically building our own personal textbooks.  I let students know that the notebooks will serve as an ongoing assessment of understanding, and are therefore treated as a graded assignment.  They know that they will be expected to periodically present their notebook to be checked.

I was inspired by @mathequalslove’s notebooks, and used her basic design for the unit dividers. The learning goals for the unit are listed on each divider, along with space for us to fill in the big picture generalizations (at the end of each unit). My school has made the decision to track students from grade 8 (honors and non-honors sections), but I do my best to leave the door open for students to be upwardly mobile by making the honors-level work available to all students.  In the notebooks, this translates to a second page for each unit, which details the honors-specific learning goals.

Included in each unit:

• Unit divider with learning goals
• Honors-level extensions with learning goals
• Essential Questions
• Unit Vocabulary
• Various graphic organizers/ note-takers for content (Although I appreciate many teachers who get crafty with their “interactive” notebooks, I don’t tend to use foldy things. It takes a huge amount of time to just glue in the flatty things)
• Worked examples

A side result of this work is that these notebooks have made me a better teacher as well. Once again, I had to take my unit plans, and really make careful decisions about what needed to be included in the notebooks. Although I don’t stick to the order in which the skills are listed, my organization has to be in place at the start of each unit.

Here are the materials for Unit 0 and Unit 1 for Algebra 1 and 2. I’ll publish these as we complete each unit.  Please do let me know if you use these, or if you have suggestions for improvement.  I have also included a Unit X in our notebooks, which includes materials for general problem solving and reference materials (times tables, trig tables, unit conversions, etc.) I’ll likely share this at the end of the year, as we are continually adding to it.  Lots of questions still linger, and I will be grateful for your input.  In particular, here are my current quandaries…

• I know that my binder sections are not right yet, (I have divided their sections into homework, classwork, assessments, reflection, and “other.”) and could definitely use some advice there.
• After two units with each class, I already see some changes I’ll make for next year.  Do you see some things you would do differently?
• Does dividing up the standard vs. honors-level targets in this way make sense?

Shifting Populations

My grade 8s studied the populations of two groups of snails, one in a tank with no predators, and one in a tank with some fish (…who apparently find snail eggs to be tasty).  My colleague from the science department, Heather Charalambous was kind enough to host this study, and to use science class time to support some of the conceptual thinking around how and why the snail populations changed (…and to count the snails!).  Kids used spreadsheets to create linear and exponential models, compared their two models, and made predictions about what would happen to the snail populations.  We checked their predictions against the actual number of snails at benchmark dates, and examined discrepancies between their predictions and the actual outcomes.  Materials are below.

For grade 10, I collaborated with two excellent colleagues, Julie Jonsson, and Rachel Iannacone to create another permutation of this project, looking at the question: What events have the most significant impacts on the populations of cities?  In grade 10, students study U.S. History, so we tweaked this to fit into their coursework.  Students were asked to choose one American City and  to examine their city’s population from 1850-1940.  As with the 8th graders, they created linear and exponential models to help them to analyze and make “predictions,” about what they thought would happen between 1940 and 1960.  They then compared their predictions to historical data, and made arguments about the reasons for any differences.  Students who were ready created some polynomial models as well – although these models potentially fit the data better, they are complex, and challenging to defend the contextual choices.  The culmination of the work asked students to look at their city’s population changes through 2014, and to make a future prediction for what they think will happen to the population over the next 35 years.

Improvements from last year…

• Collaborating with teachers from science and social studies really helped to make this work deeper for students.  Especially with the grade 10 project, students were forced to look beyond the math to examine why populations shifted.
• The math felt like it was in service of the compelling questions, and I think that students really felt like their math skills helped them to quantify and analyze an interesting problem.
• The grade 10 project guidelines and rubric were carefully honed down for clarity and depth, and were designed as a precursor to and preparation for the I.B. Extended Essay, which most of our students will complete in grades 11-12.  This improvement was largely due to the collaborative efforts of my two partners, Julie and Rachel, who were just awesome to work with.  We were able to really hash out our different opinions and priorities, without anyone feeling threatened or marginalized, and to keep working until the project met all of our standards — this was one of the best professional collaborations I have experienced.

Better last year…

• We did not have a culminating event for either of these projects this year.  Last year, we organized a “population summit,” where students presented their findings to a panel of “experts.”  Having to present their work publicly in this way really made students up their game.  This year, we did put up their work on the math wall, but somehow it wasn’t quite the same as public presentation.  Although presenting takes time, I really want to build this into the project if we can in the future.
• Although the students did get some choice in their cities, there were a few who did not get cities that they were that interested in.  This made for less engagement, and I want to figure out how to really make them feel like they have some control next year (…even if it is just the illusion of choice).

The Materials…

SHIFTING POPULATIONS FINAL ASSIGNMENT + RUBRIC

SHIFTING Essential Questions

SNAIL Project Guidelines

Let me know if you use or adapt this work for your classes, or if you have ideas for how to improve or deepen this work, and please send me a note or find me on twitter if you’d like to see some student exemplars.  Happy to share.

Math + Art + Desmos… Connections.

“I love math and art, and I’m glad that I was introduced to Desmos, a way to use both subjects at the same time.” – Marianna, Grade 10

Drawing with graphs has been a powerful way to motivate students’ interest in understanding how equations relate to functions, and how manipulations of equations lead to transformations from a parent function.  I jumped on to Fawn Nguyen’s Des-Man project as soon as I saw the idea, and have done some incarnation of this work each year.  Each time I’ve guided students through this process, it’s gotten better and deeper, both through the development of my own approach, and from improved tools like the Desmos Des-Man interface (…which I’ve heard is currently “in the shop” undergoing some improvements) and more recently tweaks to this idea like the “Winking Boy” challenge, created by Chris Shore (@MathProjects), and posted on the Desmos Activity Builder by Andrew Stadel.

They took the responsibility of recreating their chosen image seriously, and honestly, their work exceeded my expectations. There were regular exclamations of satisfaction echoing around the room as we worked on this. They persevered. They definitely attended to precision. They argued with each other about the best equations to use. They reflected about how to make the best use of Desmos. They practiced the habits of mind of successful mathematicians.

When we shared the in-progress work for some peer feedback, kids were actually applauding each other when their work came up on the screen.  Not because I reminded them to be a supportive audience, but spontaneously.  Seriously.  And when they saw the staff creative picks at Desmos, they asked me whether they might be able to submit their work.  The whole class was taking pride in creative math work.

I asked that students reflect in writing on their learning during and at the end of the project.  I haven’t asked for students to do enough writing in math so far this year, so when they seemed to be really struggling with this, I made a fill-in-the-blank “reflection assistant” to scaffold their thinking and writing, and to give them some ideas about what to include in their written analysis.

A few highlights from their reflections:

• “I was quite surprised that I could replicate a drawing by using graphing.  If somebody asked me to do it last year, I would say that it is a “mission impossible.”   However I was able to do it.”
• “As my piece of art, I chose the logo of the football club Barcelona because I am a big football fan and FC Barcelona is a club worthy to be recreated through the use of quadratic equations in vertex form. In addition, the logo was an appropriate challenge for me, containing easy and smooth curves but also difficult shapes, like letters or circles. When the project was assigned, I was skeptical that it was possible to recreate an artwork, just by using equations. But now that I am done and a proud owner of a recreated art piece, I strongly believe that it is possible (obviously).”
• “I found out that desmos is a really good tool to practice and sharpen your understanding on any equation and in my case it was the vertex form of a quadratic. Desmos allows you to experiment and find new ways to fix the problems or even work more efficient in order to surpass the problems in the first place. I am proud of the detail and sharpness of my work in general. I tried really hard to make the whole piece smooth and detailed. In order to do so, I zoomed in a lot and by doing so, I identified minor mistakes and was able to fix them.”
• I chose “Pumpkin Pepe” as the subject of my project because it provided the right level of challenge for me and it was really fun to do. Overall, I really liked this project because it solidified my knowledge of graphing equations and has made me more comfortable using parabolas. I found that my understanding of quadratic equations really improved while I worked on this project because before, I wasn’t sure which variable shifted the parabola which way, but now I understand.
• “I found that my understanding of parabolas and linear equations really helped me improve, and made me more confident during my work on this project. At first parabolas seemed to not make any sense to me, but now I feel like I really understand the way they work. Now I have the capability make connections with all these equations in the real world.”

Here are the project guidelines, the rubric, some peer editing forms, the “reflection assistant,” and a .pdf, which has a range of student work.  My rubric borrows from the I.B. Math Internal Assessment Guidelines, as one of my tasks as a grade 10 teacher at my school is to do some specific preparation for the I.B. program in grade 11.  Thanks in advance for any feedback on this project, and on the guidelines and rubric.

Desmos Drawing Project Guidelines and Rubric

Desmos Peer Feedback

Desmos Drawing Project Reflection Assistant

Desmos-art-project-student-work-2015-16-updated

Bullseye

This is a short reflection from a lesson focused on solidifying understanding of linear and absolute value equations with Grade 8 Algebra 1 Students.

I created a game, based on the Green Globs software.  I’ve never actually used the original materials, but it looked like it would be a highly motivating activity, and being on a tight school budget, I decided that since I wouldn’t be able to make the purchase, next best thing would be to use Geogebra to make my own materials.  I called my game “Bullseye.”  I bet that the original version is slicker and more complex than mine, but it worked pretty well for us.

Here is what a “game board” looks like.   The basic idea of the game is that you need to write equations which, when graphed, hit the green dots.  Your team scores points based on how many green “orbs” your graph hits.

I grouped students in pairs and gave them whiteboards.  I handed out the rules, and projected the game board.  Students had 2 minutes to decide on their best two equations.  At the two minute mark, we called “markers down,” and students held their equations in the air.  We entered them into Geogebra and calculated their scores for the round.  I also stole the scoring from the Green Globs people: for each equation, 2 points for the first orb, 4 for the second, 8 for the third, etc. doubling for each additional orb.  Asking them to work in pairs was key.  They were forced to talk and argue about the best two equations to choose.

Students who spotted the absolute value equation in this one ran the table!

The “Expert” games included “Shot Absorbers.”  If your graph hits a shot absorber, you don’t score any points.  When these were on the board, I also allowed inequalities, but you might want to allow piecewise functions or Domain or Range restrictions if that’s where you’re at.

My 8th grade group this year is by far the most competitive group with whom I’ve worked.  They are just dialed-in when they are competing against each other (There is a total ruckus in the room when we play Grudgeball!).  I have to admit that I am not much of a gamer.  I don’t really play games, and I’m not a very competitive person.  But we need to adapt to the group that we have.  These kids are really pretty good sports.  They desperately want to win, but they are also good losers.  Even though Nathan Kraft has decided that it is potentially destructive to his classroom culture, it just works for my kids.  And as long as I have them playing in pairs or groups, at least there’s collaboration in addition to competition.

Here are about 12 game boards along with my instructions.  These could be very easily modified to work for quadratics or whatever functions you’re studying.  Let me know how it goes if you try this out, or if you have ideas for improving the game.

Bullseye Game Files and Instructions

UPDATE (2/7/2016): Of course several better versions of this activity surfaced quickly.

Generating questions

MTBoS blogging initiative, week 3!  This week’s prompt focuses on questioning.

My colleague, who teaches the grade 6 and grade 7 math courses at my school is in training to run a marathon.  He has put together a training program for himself, which includes a schedule of endurance-building, and he has been collecting data with a GPS watch.  As he examined the data, he thought that this might make a rich exploration for his students and we have been working together to set up a project  for them.

Here is what the raw data looks like

We started with the driving question: How long will Mr. Feutz take to complete the Limassol marathon? and then we began by brainstorming questions together.

• How long will Mr. Feutz take to complete the marathon?
• How many steps will he take to complete the marathon?
• How many calories will he burn during the run?
• What percentage of his overall time will be spent moving?  (Compared to taking breaks)
• What will his average heart rate be during the marathon (In B.P.M.)?
• What will be the shortest/longest mile time, and what is the range between these?

We tried to analyse which questions are actually interesting, and what might we be able to ask kids to do with them.  While running, he found that he was constantly doing math of one sort or another.  How much further will I run today? When will I arrive back at home?  Things that he had genuine curiosity about, and questions that math gives us the power to answer.

We set up a graphic organizer, and decided to ask our driving question directly.  Here are some of the kids’ initial responses.

They always manage to think of something that we haven’t anticipated (…which is why we love kids!).  “Will you be listening to music, because if it’s like… Taylor Swift, you wouldn’t be as inspired as if it was like… hard rock.”  Students were given a graphic organizer and asked to write their first guesses.   As they acquire more information, they will refine their estimates.  Part of the beauty of this work is that they will get to actually test their prediction, and compare their answer to what actually happens.

Students will revisit this project over the next weeks, and will be asked to refine their work.  They have already studied unit rates, and are moving into work on ratio and proportion next.  We are hoping that more questions will arise as we continue this work.  My favorite so far is, “Given a start time, time spent running so far, and a map of the run, can you figure out where Mr. Feutz is now?”

Here is our Graphic Organizer – totally open to your critique and suggestions.  What questions can you add to our list, and how do you come up with your project questions?  We would be most grateful if you share your curiosities or strategies in the comments.

Related:

The Thirsty Crow

Not sure which one I saw first, but I got the idea for this lesson hook from at least two teachers: Jensilvermath, and Pam Wilson. Both are creative educators, and generous online colleagues, who share their ideas, resources, and materials.

One of Aesop’s Fables tells the story of a crow who comes across a half-full pitcher of water in the desert. He cannot reach the water until he figures out that by dropping pebbles into the vessel, the displacement causes the water level to rise until he can quench his thirst. Using this narrative as our lesson hook, students were given a cup full of marbles, and a graduated cylinder partially filled with water. They were asked to predict how many marbles they would need to reach 2000 mL, and then how many more until the water overflowed.

I have found that giving too much structure can take some of the life out of a task, but not enough structure, and students flounder. In this case, I asked them a direct question, but did not suggest any methods at first.  As we were right in the midst of linear equations, my assumption was that they would jump right to dropping their marbles into the cylinder, creating a scatterplot, find an average rate of change and line of best fit.  But students always surprise me.  They asked for an extra graduated cylinder to do some experimentation, and pulled out the scale to start weighing marbles.  They traced the cylinder base to see how many marbles fit in that circle.  As we had more than one color, it was important to them to see if the lighter blue marbles were consistent with the dark blue – something I hadn’t even considered.  One group even qualified their prediction with the caveat, “…if the ratio of light blue to dark blue marbles is consistent with our sample, then
this prediction should hold.” What a nice expression of understanding. Reminder to self: always give students as much freedom as possible. Let them run until they really need help.

The students who dropped their marbles into the cylinder one at a time collected data points as the water level rose. They created scatterplots of this data, and calculated an average rate of change. Next, they used this information to find an equation for a line of best fit, which helped them to make a confident prediction about how many marbles they would need to bring the water all the way to the top. We took out enough marbles to test their predictions, and added them to the cylinder until the water level reached 2000 mL and then until it overflowed. Cheers and groans for the accuracy of their predictions.

Creating ways for students to create mathematical models and make predictions is one of the most important opportunities that I can set up for them.  These types of tasks help students to connect the math from their classroom to questions that they will come across in the real world. Even if they will not need to calculate the number of marbles to overflow a cylinder, they will almost certainly need to use similar problem-solving skills, and equally importantly, they will have to decide what math skills they need to apply to novel situations.  Students react very strongly when they see the “answer” to this type of task – very different from how most students react when looking up the answer in the back of the math textbook.  Even reluctant mathematicians couldn’t help but look closely as we counted the last few marbles out!

I used this video to introduce the Crow and the Pitcher. It’s short but gets the point across. I shot a video of our cylinder, and edited it into a 3-Act format while I had the supplies out.  I think that if you can get your hands on some marbles and a vessel, you may as well do this hands-on, but in case you don’t have a bunch of marbles handy, or if video is your preferred medium, I’ve published the materials below for you to use.  Did I give enough information in act 2 or did I forget something?  Please do let me know if you use any of this, and how it goes …and don’t forget to check out the Action Version…

Thirsty Crow Act 1

Thirsty Crow Act 2

Thirsty Crow Act 3

Thirsty Crow Act 3 Extended (Includes Action Version!)