Generating questions

MTBoS blogging initiative, week 3!  This week’s prompt focuses on questioning.

betterquestionsMy colleague, who teaches the grade 6 and grade 7 math courses at my school is in training to run a marathon.  He has put together a training program for himself, which includes a schedule of endurance-building, and he has been collecting data with a GPS watch.  As he examined the data, he thought that this might make a rich exploration for his students and we have been working together to set up a project  for them.

Slide1

Here is what the raw data looks like

We started with the driving question: How long will Mr. Feutz take to complete the Limassol marathon? and then we began by brainstorming questions together.

  • How long will Mr. Feutz take to complete the marathon?
  • How many steps will he take to complete the marathon?
  • How many calories will he burn during the run?
  • What percentage of his overall time will be spent moving?  (Compared to taking breaks)
  • What will his average heart rate be during the marathon (In B.P.M.)?
  • What will be the shortest/longest mile time, and what is the range between these?

We tried to analyse which questions are actually interesting, and what might we be able to ask kids to do with them.  While running, he found that he was constantly doing math of one sort or another.  How much further will I run today? When will I arrive back at home?  Things that he had genuine curiosity about, and questions that math gives us the power to answer.

We set up a graphic organizer, and decided to ask our driving question directly.  Here are some of the kids’ initial responses.

IMG_3051

They always manage to think of something that we haven’t anticipated (…which is why we love kids!).  “Will you be listening to music, because if it’s like… Taylor Swift, you wouldn’t be as inspired as if it was like… hard rock.”  Students were given a graphic organizer and asked to write their first guesses.   As they acquire more information, they will refine their estimates.  Part of the beauty of this work is that they will get to actually test their prediction, and compare their answer to what actually happens.

Students will revisit this project over the next weeks, and will be asked to refine their work.  They have already studied unit rates, and are moving into work on ratio and proportion next.  We are hoping that more questions will arise as we continue this work.  My favorite so far is, “Given a start time, time spent running so far, and a map of the run, can you figure out where Mr. Feutz is now?”

Here is our Graphic Organizer – totally open to your critique and suggestions.  What questions can you add to our list, and how do you come up with your project questions?  We would be most grateful if you share your curiosities or strategies in the comments.

Related:

Create Suspense – MTBoS Week Two: My Favorite

myfav

For week two of our blogging challenge, we were asked to write about one of our favorite lessons, games, resources, tools or strategies. It was tough to pick one.  I have so many excellent resources and tools, that as I reflected on what to write about, it made me once again realize what a great time is it to be a math teacher and just how lucky I am.  What a hard but awesome job, and what a generous and sharing community we have.

I really like keeping students in suspense.  If I can set up a situation where students want to know what’s coming next, that often translates into engagement and the desire to learn.  When you watch your favorite TV show, and it ends on a cliff-hanger, you make predictions and you think about it in between episodes.  You are connected to and invested in the story, and you can’t wait to see what happens next.  I want my classes to have at least some of this kind of anticipation.

I also like to create some public presence for math in my school, and I try to create a bit of suspense around this as well.  Typically, a few days before we publish our work on the math wall, I will put up a provocative question, or something to generate interest. This week I just put up a funny title with a big question mark, and listened for the buzz..

IMG_4831

As a culminating activity of learning about graphing linear equations, I asked Algebra 1 students to create “math faces” through drawing with graphs. They used Desmos (…it was very tempting to write a series of “my favorite Desmos” posts – everything those guys do makes my classroom better!) to create their works of mathematical art, to practice transforming linear equations, and to solidify their understanding of domain and range.  I ask students to make sketches ahead of time to ensure that they are purposeful in manipulating their equations.  This is an activity
conceived of by the incomparable Fawn Nguyen, and one that I use every year.  I have written about it before as well.  This kind of task gives all students an easy entry point, but allows for real complexity for those who are ready. This low entry, high ceiling aspect of drawing with graphs makes it a rich and motivating activity that we can return to with students again and again.  Although the Des-Man activity is not currently available through the teacher dashboard at Desmos, I have heard that it is getting a make-over and that they will be bringing it back again.  Each time, I am amazed at how motivating this activity is for students.

After a couple of days, we published our process and our results on this year’s “Sweet Wall of Math!”

P1080337

How do you create suspense and anticipation in your classroom?

2016 MTBoS Blogging Initiative: The One Good Thing Glow

onegoodthing

As a math teacher, it’s really fun to work with students who come to my classes already loving the subject, students who have already mastered the content from last year’s course so they are ready to dig deeply into novel problems in our courses, and students who feel really good about themselves as math thinkers.  Doesn’t this describe most of our kiddos?

The reality is that a large part of my job ends up being working to alleviate the trauma that students bring with them to Algebra 1 or Algebra 2.  They have known since second grade that they are not a “math person.”  They feel that they are not as good at math or as fast at math as others around them.  Many of their mathematical experiences have left them feeling inadequate, and math has been a place where their self esteem has been eroded.  Not a big surprise that they have trouble accessing the beauty of the subject.

One of my grade 10 students showed up this year with all of the marks of earlier trauma.  She was reluctant to speak in class or even when I worked one-on-one with her.  When she did answer a question, it always sounded like she was asking rather than answering (…y’all know that “I have no idea if what I’m saying is right” tone of voice).

This week, she had a perfect score on her linear systems and inequalities assessment.

And this wasn’t an easy test.  I always include some questions that ask kids to synthesize and apply, and to recall ideas from earlier work – typically, I have very few 100%s.  In fact, hers was the only perfect score in the class.  Although I generally avoid comparing students to each other, I couldn’t resist sharing this with her.  You should have seen her trying to pretend that she wasn’t beaming!  I wrote a note the her mom, to share how proud I was of this effort and of her success.  When I saw her mom the next day in the school lobby, there were tears in her eyes while we spoke about this.  She said that her joy had nothing to do with the score.  She didn’t care about the test score, but she could see and feel the difference in her daughter’s confidence and sense of self.  I couldn’t agree more.

What a wonderful way to begin my Thursday.  The One Good Thing glow stuck with me all day!

2016 Blogging Initiative

mtbos-blogging-initiative

I am participating in the 2016 MTBoS Blogging Initiative.  I am doing this in part in to open my classroom up and share my thoughts with other teachers. I hope to accomplish this goal by participating in the January Blogging Initiation hosted by Explore MTBoS

exploremtbos

I’ve just dusted off my “About Me” page to include the schools at which I’ve taught, and I’m excited for the next month.  You, too, could join in on this exciting adventure. All you have to do is dust off your blog and get ready for the first prompt to arrive January 10th!

The Thirsty Crow

IMG_4286

Not sure which one I saw first, but I got the idea for this lesson hook from at least two teachers: Jensilvermath, and Pam Wilson. Both are creative educators, and generous online colleagues, who share their ideas, resources, and materials.

Screen Shot 2015-12-03 at 7.33.57 PMOne of Aesop’s Fables tells the story of a crow who comes across a half-full pitcher of water in the desert. He cannot reach the water until he figures out that by dropping pebbles into the vessel, the displacement causes the water level to rise until he can quench his thirst. Using this narrative as our lesson hook, students were given a cup full of marbles, and a graduated cylinder partially filled with water. They were asked to predict how many marbles they would need to reach 2000 mL, and then how many more until the water overflowed.

I have found that giving too much structure can take some of the life out of a task, but not enough structure, and students flounder. In this case, I asked them a direct question, but did not suggest any methods at first.  As we were right in the midst of linear equations, my assumption was that they would jump right to dropping their marbles into the cylinder, creating a scatterplot, find an average rate of change and line of best fit.  But students always surprise me.  They asked for an extra graduated cylinder to do some experiIMG_4298mentation, and pulled out the scale to start weighing marbles.  They traced the cylinder base to see how many marbles fit in that circle.  As we had more than one color, it was important to them to see if the lighter blue marbles were consistent with the dark blue – something I hadn’t even considered.  One group even qualified their prediction with the caveat, “…if the ratio of light blue to dark blue marbles is consistent with our sample, then
this prediction should hold.” What a nice expression of understanding. Reminder to self: always give students as much freedom as possible. Let them run until they really need help.

The students who dropped their marbles into the cylinder one at a time collectIMG_4312ed data points as the water level rose. They created scatterplots of this data, and calculated an average rate of change. Next, they used this information to find an equation for a line of best fit, which helped them to make a confident prediction about how many marbles they would need to bring the water all the way to the top. We took out enough marbles to test their predictions, and added them to the cylinder until the water level reached 2000 mL and then until it overflowed. Cheers and groans for the accuracy of their predictions.

IMG_4340

Creating ways for students to create mathematical models and make predictions is one of the most important opportunities that I can set up for them.  These types of tasks help students to connect the math from their classroom to questions that they will come across in the real world. Even if they will not need to calculate the number of marbles to overflow a cylinder, they will almost certainly need to use similar problem-solving skills, and equally importantly, they will have to decide what math skills they need to apply to novel situations.  Students react very strongly when they see the “answer” to this type of task – very different from how most students react when looking up the answer in the back of the math textbook.  Even reluctant mathematicians couldn’t help but look closely as we counted the last few marbles out!

IMG_4554

I used this video to introduce the Crow and the Pitcher. It’s short but gets the point across. I shot a video of our cylinder, and edited it into a 3-Act format while I had the supplies out.  I think that if you can get your hands on some marbles and a vessel, you may as well do this hands-on, but in case you don’t have a bunch of marbles handy, or if video is your preferred medium, I’ve published the materials below for you to use.  Did I give enough information in act 2 or did I forget something?  Please do let me know if you use any of this, and how it goes …and don’t forget to check out the Action Version…

Thirsty Crow Act 1

Thirsty Crow Act 2

Thirsty Crow Act 3

Thirsty Crow Act 3 Extended (Includes Action Version!)

Lies and Collaboration

I actually enjoy the puzzle-like aspect of exponent rules, and simplifying radicals.  For me, there is something satisfying about learning ways to manipulate numbers and letters – probably why I love algebra so much.  But I am tuned-in enough to my students to know that many of them don’t find the same satisfaction from doing this work just for the sake of intellectual exercise.   And since calculators came into vogue, it’s been harder to justify the need for rationalizing the denominator or expressing the square root of 50 as 5 times the square root of 2.  But we are tasked to follow standards that often include these kinds of skills and it has been helpful for me to turn this into exploration or game learning as much as possible.

IMG_4135I did some mining of the MTBoS for ideas to teach rules of exponent arithmetic and came across this post, which includes a nice exploratory worksheet from Andrew Stadel.  He describes a similar issue with contextualizing exponent rules for middle schoolers – one of the really great things about our online community are these moments where we are reminded that we are not alone.  He asks his students to find the mistakes in the equations, to explain where the author went wrong, and to find the correct solutions.  He used a bunch of the common misconceptions found on mathmistakes.org to help students to catch themselves in the common errors.  Very nicely done.  This would have been a good lesson as is.

IMG_4147Then I remembered the Bucket O Lies protocol from Nora Oswald at Simplify With Me.  Nora manages to gamify math like no one else that I’ve seen.  She manages to add entertainment even to potentially dry topics like this one.  I combined Andrew’s worksheet with Nora’s idea to make a bucket-o-exponent lies.  I printed the 3 worksheets, cut them out into individual problems, folded them up, and put them into buckets (or baskets).  Voila! Drama and Motivation.  In pairs or threes, learning happened.

IMG_2885Of course, I hammed it up with the students.  There’s nothing like telling teenagers that someone is trying to get one over on them to motivate them.  This has worked well for me in the past, especially when it came from advertisements.  I riled them up by acting outraged that someone had created this whole set of math material, which was full of mistakes!  (Actually, I blamed Andrew :) ) …Lies I tell you… these baskets are FULL OF LIES!  Let’s find the mistakes so we can write a self-righteous set of corrections back to this author who was deliberately spreading bad math.

They quickly saw through my act, but it was enough.  They were already motivated in spite of themselves.  Andrew’s worksheet was just enough for everyone.  I started by coaching the groups who needed help getting started and moved to pairs who were making mistakes with fractional exponents.  For my honors group, I added a few more examples with rational exponents.

Thanks Andrew!  Thanks Nora!  Our generous community is the Best!

Unknown

Revealing Learning Targets

DSC06230I am not always sure about how explicit to be about learning targets.  I have seen some convincing research, which seems to indicate that letting students know exactly what is expected of them for each lesson helps them to take ownership of their learning, and to make sure that they are getting what we think they are getting during each class session.  I agree with this practice in general, and I believe that it definitely has a positive impact on some students.  My current school, as well as the previous one have required that we post targets each day, and there are many educators who I respect who advocate for this practice.  But sometimes, I feel like a learning target can put a limit on where we can go as a class, and can feel a bit stifling, especially when we want a problem or exploration to feel open-ended.

Lately, I have adopted a practice of “Hidden Targets.”  I do post the learning target, but I often leave it covered up during class.

IMG_4121As part of our end of class routines, students make conjectures about what they think that today’s learning target was.  We reveal the target, assess how well the lesson matched the target, and whether the learning matched what was expected.  Although I think that I am good at starting class off, and generating enthusiasm, I sometimes am not as good at synthesizing and wrapping up.  Being conscious of synthesis and wrapping up class in a richer way has been one of my goals for this year, and this routine has been a good protocol for me and for my students.  It quickly reminds us about what we learned during class, and how this lesson fits in to the bigger picture.  Students have been highly engaged in figuring out the day’s learning goals; I hear students talking throughout the class period about what they think is under the flap for today – and you know that they remind me if I forget to do the “reveal!”

IMG_4119…And it doesn’t hurt that we have created this sweet Appolonian Gasket on which to showcase the day’s targets.  Who doesn’t want to stare at this and contemplate infinity?!

First Week: Building Culture

The start of the school year is one of the most important moments for my classes.  Setting the right tone and attitude right from the beginning can mean buy-in from students right away – and conversely, a bad start can be really tough to recover from.  I had a pretty good start this year in my Algebra 1 and Algebra 2 classes.  I wanted to share some things that worked for me in case someone else might benefit, and to document the week, as I may repeat much of this work next year.

My students have been working on a pseudo-Appolonian gasket on the whiteboard. It makes a nice frame for our learning targets.

My students have been working on a pseudo-Appolonian gasket on the whiteboard. It makes a nice frame for our learning targets.

I have several goals for how I want my classroom to “be,” and the first week is a chance to work on some of the big picture ways that we will be working together this year.

  • It is important to me that as a group, we celebrate scholarship – and the struggles involved in becoming scholars
  • I want to nurture a love of learning and of curiosity
  • Our classroom has to be a safe place to take chances and to make mistakes
  • We need to be able to work collaboratively – even more than in other subjects, I believe that we really need to see how others think in order to understand math
  • To that end, we need to learn to be comfortable talking (and arguing!) about math
  • We need to work independently as well, and to trust and value our own ideas
  • We need to respect each other, and hopefully to love each other at least a little.  Of course I love all of them.

I used a series of activities (all sourced from the MTBoS of course) to try to help establish this culture.

IMG_3973

DAY 1: What does it take to do math?

Very first thing, I assigned each student a “secret partner” for the week, based on this idea from Origins.  Students are to observe their partner throughout the week, and are responsible to report back an acknowledgement of something positive that they observed at the end of the week.  The payoff for this happens on day 5.  Next, I introduced a version of Jasmine’s Tabletop Twitter.  I set up 5 stations around the room.  Each had chart paper with a question/prompt on it.  Students moved around the room in two minute rotations, and were asked to respond silently to each question.  I followed Jasmine’s lead in asking students to take a marker and write their name with that marker, so we could look back and see who had authored each comment.  My five prompts were:

  1. Why do we learn math?
  2. What will make our math class a good learning environment?
  3. What does it take to be a good math student?
  4. Respond to this quote: “Mathematics is not a careful march down a well-cleared highway, but a journey into a strange wilderness, where the explorers often get lost.” – W. S. Anglin
  5. Add a song to our class playlists. Write a genre instead of a song if you prefer.

At the last station, I gave out this Capture your thoughts organizer, and asked students to synthesize and summarize the most important points from their station, to add anything they thought was missing, and then report back to the whole group.  We hung our new “posters” in the hall on this year’s “Sweet Wall Of Math,” to help establish that our work will be public this year and we are proud to show our thinking to the world.  I’ll use the ideas they shared to create our learning agreements for the year.  For anyone who would like more detailed plans for day 1, I’ve written them up just for you: Day 1 Plans. :)

Day 2: How can we create the questions?

I am totally convinced of the positive impact that Dan Meyer’s 3-Act format can have an a group of math students, so I was excited to introduce 3-Act math tasks right away on day 2.  Students are so used to arriving in math class, and just imitating the teacher that they often don’t know how to react when they are asked to think of a question themselves, and then asked to figure out what they actually need to do to solve their question.  The first tasks like this can be really tough and even painful, often for some of the “top” students.

IMG_3970

The Super Bear was a nice one for both groups.  The math was easily accessible, which gave us room to learn the structure of how we should approach these kinds of tasks.  I made a new 3 Act handout for students to use, and guided them through the process.  I was strict about keeping silence in the room for the entirety of Act 1, except when they were asked to share their guesses and to establish a high/low range.  I stressed the importance of this “grappling” time, when they get to really think for themselves without the bias of hearing others’ ideas, and promised that they would get to work together for the rest of the task.  This is one of the important routines in my class, and is one of the few rules I impose on the group without their input.  Every group suggested weighing the bears, and several came up with ideas for how to measure volume (displacing in water, melting down the bears…).  Act 3 provided some rich discussion about the discrepancy between their solutions and the revealed answer, and the drama of the reveal of Act 3 can’t be beat!  Even reluctant students can’t look away as the gummy bears are weighed out.

Game About Squares Pic

Day 3: Metaphors for perseverance.

We spent much of our class playing the Game About Squares.  I followed Annie Fetter’s suggestion to try this out with students, and read her post about this several times, so it was fresh in my head. She has a clarity about the importance of these tasks that I wanted to hold on to, emulate, and embody for this lesson.  This is a game that does everything that we want in our math classes.  It meets kids where they are, and little by little gives them slightly more challenging tasks to accomplish.  I (mostly)refused to help them at all, but made it clear that they were expected to figure out what to do.  After some initial discomfort with the whole idea that they were going to be playing an on screen game, and that I wouldn’t help, they dove in.  They grappled, made mistakes, started over, helped each other, groaned, and persevered.   They were competitive and proud when they solved each level.  We used the last 15-20 minutes to debrief the activity, to list the things that helped us succeed, and to respond to a short survey.  We talked about how these skills actually encompass just about everything that they need to be successful math thinkers.  Interesting that the number one thing they did that helped them to be successful in this game was to make mistakes.  I bet that we will be referring back to this often.

Annie Fetter is the best.  Just Saying.

G of Squares Survey results

Survey results after 30 student responses. Notice the top result!

Day 4: Number flexibility: You mean there’s more than one answer?

Day four, we worked on the four 4s.  This has been a favorite of mine since I began working with students.  It allows for multiple approaches and creativity in math thinking.  I’ve written about it further here and here.  This year, I decided to keep it to one class period.  In groups of 3, I challenged Algebra 1 students to create every number from 1-20, and Algebra 2 to shoot for 1-30.  We put their work out on our Sweet Wall, and they may go later to try to fill in any blanks.  Jo Boaler and the Youcubed team put together an excellent week of inspirational math, which began with this activity.  The rest of the inspirational week’s activities were tough to resist.  There are some good ones in there, along with great growth-mindset messages for students.  I may get back to the others later in the year if we have time.  I did play her day one video, and led a short discussion hinting at growth mindset to end Thursday’s class.  I was also especially tempted to jump on the explicit growth mindset work that Julie Reulbach has shared, but we can’t do everything.  I will be following Julie’s reflections closely to see how her implementation goes this year.

IMG_3972

Day 5: Assessing Numeracy + Mathematical Drama.

Trying to do Algebra without a solid understanding of arithmetic is rough.  I’ve seen students suffer through this, and it is not easy for me or for them, and there just isn’t the time during Algebra 2 to work on dividing fractions or operations with negative numbers.  So we’re implementing an after school numeracy workshop this year for grade 8, 9, and 10 students who need more support in this area.  We used this class to assess students’ arithmetic skills, and to identify those who might be most helped by the after school program.

I saved the last 20 minutes of class to follow up on the secret partners activity, and for a read-aloud.  Secret partners takes just a few minutes, but has a nice impact on student attitudes.  They act reluctant to speak nicely about each other, but they are grateful for this opportunity to celebrate each other’s good qualities.  Comments ranged from “I noticed A looking out for the new student at lunch” to “Y worked really hard on the science lab” to “X is really funny and cracked me up in English yesterday.”  I ended the week by reading the introduction to Zero: Biography of a Dangerous Idea.  This is an excellent book, and the introduction is high drama!  And kids just like to be read to.

IMG_3971

Although we didn’t get deep into new content this week, we did some valuable math together.  But equally important is the positive feeling that students left with on Friday afternoon.  With confidence in themselves from their successes, with trust in each other and the knowledge that their peers notice their positive behaviors, and with the assumption that their teacher cares about them, we are set up for the year.  Now we need to hold on to this feeling when the going gets rougher!

 

 

 

BOOM

“The UN experts disagree about what the future will hold, so we figured that if we wanted answers to our questions that we would need to become the experts.”best_global_math_big_marker_logo.001

I was fortunate to catch the rerun of an excellent Global Math Department presentation by Kyle Moyer and Zack Miller(@zmill415).  They presented their approach to curriculum and instruction, which focuses on project based learning, and integration in the math classroom.  They included a description of their “Booming Populations” project, designed to study and compare linear and exponential functions by examining population trends and predicting the population of a country in the year 2050.  The materials they designed are well thought out and put together, and I decided to adapt the project for my Algebra 1 students in Cyprus.   This was a rich experience for my students for many reasons.

Screen Shot 2015-05-04 at 7.32.19 pm
I used a gallery walk format to build background knowledge and pique interest, and there was quick and solid engagement.  Students were fascinated by the world population trends, and were especially hooked by the leaps in population size over the last century as compared to the rest of history.  This example of exponential growth was both attention getting and highly understandable.   There was built in choice.  Students were allowed to choose a country – and I can’t overstate how much of a difference this makes for them.  They picked a country that they had some interest in or connection to; a family connection or a place that they had visited or wanted to visit, or just a country that they wanted to learn more about.  Choices ranged from China to Greenland to Peru to North Korea, allowing for deep comparisons of statistical trends, modelling validity, and evaluation of source data.

Screen Shot 2015-05-04 at 7.31.54 pm

The work was easily and naturally differentiated.  Students who were approaching mastery could plug numbers into a slope-intercept equation and into a standard exponential formula, and those who were ready could really push the nuances of their models.  I even had a few students dabble with quadratic models (…and this was before we had covered quadratics in class).  Advanced students could keep on adding complexity and depth to their predictions by taking into account more pieces of information – demographics, political stability, or even global climate change (will the Maldives still be around in 2050 or will the islands be underwater due to rising sea levels leading eventually to a zero population?).  And this was naturally self-paced as well.  Very few students reached a “stuck” point, where they needed to wait for the teacher to tell them where to go next.  Over the four weeks that we worked on this, I used a combination of discovery-based lessons and some direct instruction to help students build skills to be successful in this project.

P1320078

Students were asked to examine and compile population data for their country from 1960-1990, and to create linear and exponential models to study this data.  They then created a model to predict the trends that they would expect from 1990-2015.  After comparing this model to the actual population numbers, students committed to one type of model to predict the population of their country in the year 2050.  They were required to complete a written analysis, and to present their analysis and predictions to an audience including a “panel of experts” at our “2015 Population Summit.”  Knowing that they would be presenting this work publicly lent gravitas to most of what they did – they were invested in understanding and being able to explain the math that they used, and to justify the decisions that they made in creating their models.  They learned to harness the power of spreadsheets to help them to organize their data and to create graphs – a really great skill for them to practice.  The public nature of this work forced them to make accurate graphs, and to consider carefully decisions about scale, and how to best communicate data visually.

IMG_2635

This was definitely some of the best learning that I have been able to orchestrate as a teacher.  Every student achieved the basic learning targets, and most exceeded the standards.  Students were comfortably using vocabulary like linear vs. exponential models, initial condition, growth factor vs. growth rate, and I heard many arguments between students who were invested in defending the mathematical choices that they had made.  This project found that sweet spot between just enough structure to keep everyone on track, and enough freedom to allow students to make decisions and to own the work.

While I shamelessly use and reshuffle ideas from books and from the MTBoS, I nearly always have to tweak and remake the materials for my students.  The language, design, or content have to be customized to meet them where they are, and to give them just enough information to succeed without giving them so much that they don’t have the chance to do their own thinking.  The materials that Zack and Kyle have so openly shared (THANK YOU Zack and Kyle!!)  are as close to ready-made as I have found.  I made some minor tweaks to the guidelines and formatting, but used almost all of their work.  Their approach to teaching math is very well articulated, and their Global Math presentation is very much worth watching in its entirety as well.  Their use of “playlists” to help students self-direct is especially interesting.

I am hoping to develop this into a more interdisciplinary and comprehensive project for next year, and perhaps something that could be a staple of the 8th grade curriculum.  My goals for our math program include building inquiry into the math class process, and creating connections between math and other content areas, and I am especially interested in feedback on ways to leverage these things.  Please do throw your ideas in the comments.  If you’d like to see some student work or reflections, just drop me a tweet or an email.  While student presentations were strong this year, I will make sure to add in more rehearsal time for them to practice next time – especially when they request that the panel of experts ask hard questions.

“Hello and welcome to the 2015 AISC population summit. In our 8th grade Algebra class, we have been looking at world population trends, and thinking about what will happen going into the future.  The UN experts disagree about what the future will hold, so we figured that if we wanted answers to our questions that we would need to become the experts.

 Each of us chose one country to study. We examined our country’s population changes since 1960, and created graphs and mathematical models to help us predict what the population of our country will be in the year 2050.

 We compared a linear model and an exponential model, and decided which one we thought would make a better prediction for our specific country. We did some basic research into our country’s history to give some context to our math models.

 We hope that you enjoy yourselves, that you learn something, and that you are willing to ask us hard questions and give us critical feedback.”

BTW: The Desmos Penny Circle is of course a perfect companion/ follow up to this activity.

Quadratics: Mighty Square! (start by completing the square)

IMG_2590

Many texts I’ve seen ask students to solve quadratics by factoring, then by graphing, then memorising the quadratic formula, and then if there’s time left, they are introduced to the idea of completing the square.  I’ve done it before like this myself, and I have seen students struggle mightily and miserably.  For me, beginning with factoring is problematic.  While factoring trinomials can be satisfying, especially for students who like the puzzle solving parts of math class, this technique generally only works with problems that have been contrived by math teachers or textbook writers.  Most quadratics we come across don’t naturally factor to nice clean numbers like y=(x+4)(x-2).

IMG_2408

I was looking for a better approach, and came across James Tanton’s take on quadratics.  He emphasizes symmetry as the key to studying and understanding quadratics, and right from the start, teaches completing the square (Although he relentlessly resists formal vocabulary, and calls it the “box method”) as the way to solve for x.    His course gives a sequence of problems, each of which adds one level of complexity until students can solve just about any quadratic thrown at them.  As he says, “The box method will never let you down.”

IMG_2274

Developing a solid conceptual understanding of completing the square leads naturally to moving back and forth between standard and vertex form, and to the derivation of the quadratic formula – and students know why it works.  And the best part is, only one of my students from this year’s group uses the quadratic formula as her go-to method.  They all go straight for completing the square because they understand why and how it works, and are totally comfortable with the techniques.  Most of them can recite the formula, but they are worried about making arithmetic mistakes, and are not as confident in their results as they are when they use symmetry and completing the square.

 

IMG_2272

I strayed from Tanton’s approach in some ways – we figured out imaginary solutions with the honors group (Tanton advocates to leave out imaginary solutions when studying quadratics with Algebra 1 or 2 classes) – because they asked, and because they were ready to expand their horizons.  And I did eventually teach factoring as a method of solving quadratics.  Tanton suggests that factoring might be better included when we’re working on a discreet study of polynomials – but honestly, it was easy for me to fit in as the last method I taught.  We took less than one full class period to discuss and practice factoring, and by the time we got there, students understood what the factors meant, and how they related to the roots of the quadratic.  They appreciated the quickness of the solutions when factoring worked, and understood that if it didn’t work easily, that they could fall back on methods they know.

Every one of my Algebra students, even those who really struggle with math have had success moving through this sequence.  Although this is only one year, and there are always other variables, I am convinced that this order makes much better intuitive sense.  I’ll report back next year after I’ve had the chance to try this again.

IMG_2605

I love the way that the white boards look when studying quadratics

BTW, some of my favorite resources to go deeply into studying quadratics include